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Abstract. Problem definition:Congestion pricing offers an appealing solution to urban park-
ing problems—charging varying rates across time and space as a function of congestion may
shift demand and improve allocation of limited resources. It aims to increase the accessibility
of highly desired public goods and to reduce traffic caused by drivers who search for avail-
able parking spaces. At the same time, complex policies make it harder for consumers to
make search-based decisions. We investigate the effect of congestion pricing on consumer
and social welfare. Academic/practical relevance: This paper contributes to the theory and
practice of the management of scarce resources in the public sector, where welfare is of partic-
ular interest. Methodologically, we contribute to the literature on structural estimation of dy-
namic spatial search models. Methodology: Using data from the City of San Francisco, both
before and after the implementation of a congestion-pricing parking program, SFpark, we esti-
mate the welfare implications of the policy. We use a dynamic spatial search model to struc-
turally estimate consumers’ search costs, distance disutilities, price sensitivities, and trip valu-
ations. Results: We find that congestion pricing increases consumer and social welfare by
more than 4% and reduces search traffic by more than 10% in congested regions compared
with fixed pricing. However, congestion pricing may hurt welfare in uncongested regions, in
which the focus should be on increasing utilization. Moreover, an unnecessarily complex
congestion-pricing scheme makes it difficult for consumers to make search-based decisions.
We find that a simpler pricing policy may yield higher welfare than a complex one. Lastly,
compared with a policy that imposes limits on parking durations, congestion pricing in-
creases social welfare by allocating the scarce resource to consumers who value it most.Man-
agerial implications: The insights from SFpark offer important implications for local govern-
ments that consider alternatives for managing parking and congestion and for public-sector
managers who evaluate the tradeoffs between approaches tomanage public resources.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0995.

Keywords: congestion pricing • dynamic spatial search model • public sector • traffic management

1. Introduction
One of the challenges in managing public goods is to
achieve an efficient allocation of resources while keep-
ing utilization high. Without intervention by policy
makers, individuals tend to overuse public goods and
ignore the negative externalities they impose on others.
This behavior leads to congestion and other inefficient
outcomes, a problem commonly referred to as the trag-
edy of commons. This problem is present in urban
parking—affordable prices of public parking cause
some users to overuse parking spaces without consid-
eration of the negative impact to others. This behavior
can induce urban transportation and other problems.
As Shoup (2005, p. 7) writes, “just as cattle compete in
their search for scarce grass, drivers compete in their
search for scarce curb parking spaces. Drivers waste
time and fuel, congest traffic, and pollute the air while

cruising for curb parking.” Summarizing 16 studies,
Shoup (2006) found that, on average, 30% of urban traf-
fic was caused by drivers cruising to search for parking
rather than driving to their desired destinations.

Congestion pricing is one solution to manage traf-
fic congestion (Vickrey 1952). Although Vickrey and
others proposed the solution many decades ago, due
to the technological challenges involved, it has only
been put into practice recently. To implement con-
gestion pricing, cities must install technologies such
as cameras and sensors to track congestion levels fre-
quently. In recent years, a few cities experimented
with different variations of congestion pricing, in-
cluding New York City’s PARK Smart (2008), San
Francisco’s SFpark (2011), and Berkeley’s GoBerkeley
(2012). With varying levels of pricing complexity, all
programs reported increased accessibility and lower
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congestion (see reports for details of the various
programs).

Although accessibility and decreased congestion
are important, they are not all that matters. Social
planners also care about maintaining high levels of
utilization of public goods. Doing so is challenging be-
cause utilization induces congestion. Therefore, a
good policy that strives to increase consumer and so-
cial welfare must strike a balance between utilization
and congestion.

Using SFpark—the congestion-pricing parking pro-
gram implemented by the City of San Francisco—as a
test bed, we wish to answer the following questions in
this paper: (1) How does congestion pricing affect ex-
ternalities caused by consumers, such as search? (2)
Would congestion pricing lead to a more efficient allo-
cation of public resources and improve welfare via
that allocation? (3) What are the caveats of implement-
ing congestion pricing?

To answer these questions, we model customers’
parking decisions using a two-stage dynamic structur-
al model. In the first stage, a customer decides wheth-
er to drive and, if so, whether to park directly at a
garage or to search for on-street parking. If a customer
decides to search, in the second stage, she will make a
dynamic decision of whether to park on the street,
continue to search, or abandon searching. We estimate
consumers’ search costs, distance disutilities, and
price sensitivities using availability and payment data
from the SFpark program. We then use the estimates
to quantify the effect of congestion pricing on con-
sumer surplus, social welfare, and search traffic.

We find several interesting results. First, our empiri-
cal analysis indicates that the effect of congestion
pricing on consumer surplus depends on the level of
congestion in a region—congestion pricing may either
increase or decrease welfare, depending on the char-
acteristics of the region we study. Congestion pricing
increases welfare in popular regions with moderate to
high congestion levels. However, it decreases welfare
in less-congested areas.

Second, even though it increases parking availabili-
ty, a complex congestion-pricing scheme makes it dif-
ficult for consumers to make search-based decisions
(e.g., where to start, where to search, etc.) and also in-
duces search for lower prices. Interestingly, we find
that a simpler three-tier pricing policy may increase
welfare relative to a more complex policy because
consumers can be more informed and use this infor-
mation to improve decisions.

Finally, we compare the efficacy of congestion pric-
ing to a policy that charges a fixed price, but sets time
limits on parking (which was the policy in San Fran-
cisco prior to SFpark). We find that congestion pricing
leads to higher social welfare, but that the effect on
consumer surplus is ambiguous.

What we learn from SFpark offers important lessons
to local governments that consider alternative ap-
proaches to manage parking congestion. Congestion
pricing is indeed an attractive approach to manage
highly utilized public resources. It leads to higher wel-
fare by allocating the resource to customers who value
it the most. However, a good implementation of con-
gestion pricing is nuanced. First, the level of conges-
tion matters—congestion pricing may not work as
well in uncongested areas.

Second, the complexity of the pricing policy matters—
if the pricing policy is very complex, congestion pricing
may lead to inefficient search and decrease welfare.
Therefore, a simpler policy is often more desirable than a
complex one.

Finally, our results highlight ways to manage scarce
public resources better. Public-sector managers often
mitigate overutilization by rationing capacity through
usage limits or permits. We demonstrate that conges-
tion pricing can be a more efficient approach. Conges-
tion pricing accounts for heterogeneity in consumer
demand through price discrimination, an aspect miss-
ing from capacity-rationing levers. Of course, plan-
ners may have additional factors to consider, such as
feasibility, cost, and equity concerns, when choosing a
strategy. Nevertheless, our analysis offers quantifiable
results and a generalizable methodology for public-
sector managers to better evaluate the tradeoffs in-
volved in making such decisions.

2. Literature Review
This paper is related to three streams of literature:
(1) dynamic pricing, price discrimination, and the ef-
fect of pricing on welfare; (2) public-sector operations
management; and (3) consumer-demand modeling
and structural estimation. We review each stream and
discuss our contributions below.

2.1. Dynamic Pricing, Price Discrimination, and
the Effect of Pricing on Welfare

Our paper contributes to the theory and practice of dy-
namic pricing. In the past several decades, dynamic
pricing has been successfully applied in a number of in-
dustries, such as airlines, hotels, and car rentals. More
recently, additional industries, such as sports, concert
planning, and retail, started adopting these strategies
(Shapiro and Drayer 2014, Xu et al. 2019, Tereyağoğlu
et al. 2017, Fisher et al. 2018, Moon et al. 2018).

This line of research focuses primarily on profit/
revenue-maximization objectives, but a few empirical
analyses examine the welfare effect of price discrimi-
nation. Leslie (2004) is one of the first studies to mea-
sure the welfare effect empirically. Unlike revenue or
profit, welfare is not directly observable. Therefore, it
is necessary to develop structural models to explicitly
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capture consumers’ utility functions and decision pro-
cesses. Using Broadway theater as an example, Leslie
(2004) finds that although price discrimination leads
to a 5% increase in firm profit, its impact on consumer
surplus is negligible. Using airline data, Lazarev
(2013) compares intertemporal price discrimination to
alternative pricing schemes (free resale, zero cancella-
tion fees, and third-degree price discrimination) and
finds that the welfare effect is ambiguous and can be
moderated by the mix of business versus leisure trav-
elers. We contribute to this line of research by empiri-
cally analyzing the welfare effect of dynamic pricing
through structural models. We examine a dynamic
pricing program implemented for city parking, where
welfare is of particular interest. We offer insights on
the conditions that affect the sign of welfare in the
context of a public-sector problem.

2.2. Public-Sector Operations Management
There are a growing number of operationsmanagement
papers studying the public sector. Although a large
body of this research focuses on healthcare, research is
also burgeoning in education, public transportation, en-
ergy and utility, natural resource management, and,
most recently, the design of smart cities. Despite diverse
contexts, a common theme that differentiates public-
sector versus private-sector operations is the public sec-
tor’s focus on societal outcomes rather than profitability.
As a result, much emphasis has been placed on quality
(e.g., Kc and Terwiesch 2009), congestion and utilization
(e.g., Powell et al. 2012 and Berry Jaeker and Tucker
2017), accessibility (e.g., Kim et al. 2015 andGallien et al.
2017), and welfare and equity (e.g., Ashlagi and Shi
2016 and Kök et al. 2018). The design of smart cities is
receiving a lot of attention recently, with advances in
technology. Among the issues analyzed are sharing ser-
vice integration (Qi et al. 2018), electric vehicles and
battery-charging facilities (Mak et al. 2013, Schneider
et al. 2018), and bike-sharing systems (Kabra et al. 2020).
We contribute to this emerging topic by examining
congestion-pricing policies for city parking and their
implications onwelfare.

Stavins (2011) reviews and discusses two approaches
to address the commons problem: the command-and-
control approach (set usage limits) and the market-based
approach (set prices to internalize the externalities).

Despite the long-standing literature on optimal pric-
ing (e.g., Vickrey 1952, Williamson 1966, and Arnott
and Inci 2006), empirical analyses of consumer reac-
tion to dynamic pricing in public transportation are
relatively scarce. Two recent studies (Ottosson et al.
2013, Pierce and Shoup 2013) estimate demand elastici-
ty of changes of parking rates using regression ap-
proaches. Without explicit consumer-decision models
and structural estimation, however, they are unable to
offer insights on the effects on welfare. We show that

the market-based approach leads to greater social wel-
fare compared with a command-and-control policy,
but that the effect on consumer surplus is ambiguous.

Finally, our work is related to studies of congestion
in service operations, most of which analytically mod-
el the role of prices in regulating congestion in serv-
ices, but recent papers also investigate the role of time
limits (Tong and Rajagopalan 2014, Feldman and
Segev 2020). For extensive reviews, see Hassin and
Haviv (2003).

2.3. Consumer Demand Modeling and
Structural Estimation

There is an increasing number of papers that use
consumer-choice models (Vulcano et al. 2010, Leder-
man et al. 2014, Fisher et al. 2018, Kabra et al. 2020), as
well as models with dynamic decisions (Akşin et al.
2013, Li et al. 2014, Emadi and Staats 2020, Yu et al.
2017, Moon et al. 2018).

Our work is also closely related to literature on
structural estimation of search models. This research
estimates consumer search cost in different contexts,
observing (De Los Santos et al. 2012, Honka 2014,
Koulayev 2014, Chen and Yao 2017) or not observing
(Hortaçsu and Syverson 2004, Hong and Shum 2006,
Kim et al. 2010) consumers’ search paths. Similar to
the second set of papers, we also estimate search costs
and other parameters without observing search paths.
However, the data we use are more fine-grained, and
the search is multidimensional. Specifically, because
the search is conducted on a two-dimensional map, it
restricts the set of available options at every step. We
embed a random walk with no immediate return to
the dynamic search process. This enables us to ad-
dress the challenge of dimensionality in estimation,
while at the same time introduces randomness in the
consumers’ search process.

3. Background on the SFpark Program
and Data Description

In this section, we introduce the SFpark program. We
then describe the data used for this study and provide
summary statistics for the periods before and after the
implementation of the program.

3.1. The SFpark Program
The City of San Francisco implemented SFpark in 2011
to address urban parking problems via congestion
pricing. Rather than charging a constant rate at all lo-
cations and at all times, the program adjusts parking
rates according to demand. One of the challenges in
implementing congestion pricing is that it requires
constant monitoring of parking-space utilization to
adequately adjust prices. SFpark adopted several tech-
nologies, including parking sensors and smart meters,
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to track availability and measure utilization. The
adoption of these technologies enabled SFpark to im-
plement a data-driven parking-pricing strategy. It also
enabled researchers to conduct detailed analysis of
consumer response to congestion pricing and its im-
plications on welfare by using fine-grained data that
were not previously available.

The San Francisco Municipal Transportation Agency
(SFMTA) piloted the program in seven parking-
management regions, which included 6,000 metered
spaces amounting to roughly a quarter of the total me-
tered parking spaces in San Francisco. The pilot started
in August 2011 and ended in June 2013. The pilot was
deemed successful: It illustrated the ability to reallo-
cate demand, reduce congestion, and generate addi-
tional revenues. As a result, the program was rolled
out to the entire city in late 2013.

With congestion pricing, SFpark adjusts hourly park-
ing rates dynamically based on observed occupancy
rates. The program divides each paid-parking day
(Monday to Saturday) into three time windows: morn-
ing (9 a.m.–12 p.m.), noon (12 p.m.–3 p.m.), and after-
noon (3 p.m.–6 p.m.). Parking is free at other times and
on Sundays. For each time window, SFpark uses the
block-level average occupancy rate to determine the
hourly rate for parking, where the occupancy rate is
defined as the fraction of time that a block is occupied.
SFpark started tracking occupancy rates of the piloted
areas in April 2011, four months before the official start
of the program. They used occupancy data during that
period to determine price-adjustment rules for the pi-
lot, which started in August 2011. Before the imple-
mentation, parking was fixed at $2 per hour for all
blocks. After the implementation, SFpark raised a
block’s price by $0.25/hour if the occupancy rate was
above 80%, lowered it by $0.25/hour if the occupancy
rate was between 60% and 80%, and lowered it by
$0.50/hour if the occupancy rate was below 60%. SFpark
also adjusted off-street parking prices (city-managed
parking garages) using similar rules.1 Finally, SFpark set
an upper and a lower bound for the hourly rate—the
rate could not exceed $6.00/hour or go below $0.25/
hour. As a result of these changes, parking rates varied
by block, time of day, day of week, andmonth. Over the
two-year pilot period, SFpark made 10 on-street rate
adjustments and eight off-street rate adjustments (i.e.,
every eight to 12 weeks). All adjustments were an-
nounced on the program’s website at least seven days
before the changeswent into effect.

3.2. Data
We use three data sets provided by SFpark. Parking-
sensor data consist of hourly block-level occupancy
rates from April 2011 until June 2013. After late 2012,
however, the sensor data became incomplete due to
battery failures and sensor outages. On-street meter-

payment data contain all parking transactions starting
from the first quarter of 2011 and include start and
end times, payment types, and payment amounts. The
meter-payment data are more reliable than the
parking-sensor data because they are not subject to
battery failures. However, meter-payment data are
not an accurate proxy for availability, because drivers
may park for longer or shorter periods than paid for
or may park illegally without paying. Hence, as long
as the sensors were operating, the sensor data set is a
more accurate source for calculating occupancy rates.
We therefore used the meter-payment data to deter-
mine parking locations and durations, but did not use
it to infer occupancy rates. Off-street garage data con-
tain usage data for publicly owned parking garages.
We observe transaction-level payment data at the
same level of detail as meter-payment data. The
garage-transaction data are not subject to illegal or
undertime/overtime parking, because payment is de-
termined based on actual parking time.

Because of the increase in sensor failures starting in
late 2012, we only use data from April 2011 to July
2012. To control for seasonality and to make fair com-
parisons between the before and after periods, we use
data from the same months in both years: April to
July 2011 (the before period) and April to July in 2012
(the after period), as shown in Figure 1.2 The SFMTA
extended the parking time limit in the pilot areas from
two to four hours in late April 2011. To make fair com-
parisons, we exclude the days in April 2011 in which
the parking time limit was only two hours. We also
exclude consumers who parked in a garage for more
than four hours from the main analysis, but we do ac-
count for them for garage occupancy-rate calculations.
Among the seven piloted regions, we focus on the re-
gions that are relatively more isolated from others:
Fillmore, Marina, and Mission.3

In addition to the SFpark data, we also use the In-
fogroup U.S. Historical Business Data in 2011 and
2012. The Infogroup data provide the name, street ad-
dress, and employee size of each registered business.
We calculate the total numbers of businesses of differ-
ent sizes in each parking block and merge them with
the SFpark data. For parking blocks analyzed in our
study, we identify a total of 2,051 businesses in 2011
and 2,216 businesses in 2012. Figure 2 shows the distri-
bution of business establishments in Fillmore, Marina,
and Mission in 2011. We use the number of businesses
as an input in the destination model to generate

Figure 1. (Color online) Timeline

04/11 08/11

Sample Period

Exclude for Seasonality

04/12 08/12 12/12

Battery Failure 

08/13
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parking demand. We allow businesses of different sizes
to have heterogeneous impacts on the ideal-location
demand distribution. Specifically, the Infogroup data
code the number of employees in a business as: A (one
to four employees), B (five to nine employees), C (10 to
19 employees), D (20 to 49 employees), etc. In the dis-
tricts under study, the distribution of A-, B-, C-, and
D-type businesses are 68.55%, 15.73%, 10.34%, and
4.09% in 2011 and 69.17%, 14.87%, 10.78%, and 3.83%
in 2012. Larger businesses (i.e., with more than 50 em-
ployees) account for less than 1.5% of our data for both
2011 and 2012. We thus group them with type D and
denote the combined group as D+.

Table 1 presents the before and after summary statis-
tics of the hourly parking rates, occupancy rates, and
the number of businesses for the three regions. Consis-
tent with SFpark guidelines, we use average occupancy
rates to divide the parking blocks to high (average oc-
cupancy rates above 80%), medium (60% to 80% occu-
pancy), and low (below 60% occupancy) utilization.

Table 1 shows that after the implementation of con-
gestion pricing, the mean parking rate increased by
around 150% in high-utilization blocks and decreased
by between 40% and 70% in low-utilization blocks in
Marina and Fillmore. In Mission, there were no high-
utilization blocks in the before period, and the parking
rates in the low-utilization blocks decreased slightly.4 As
expected, the average occupancy rate in low-utilization
blocks increased, while the average occupancy rate in
high- and medium-utilization blocks decreased. This
provides evidence of shifts in demand as a response to
congestion pricing. We also find that high-utilization
blocks have a higher average number of businesses.

4. Model
There are Mr consumers who are interested in visiting
region r (i.e., Fillmore, Marina, or Mission). In the

baseline model, we set the market size of each region,
Mr, to be twice the average number of drivers in the
before period, which yields a market size of 700 in
Marina, 1,135 in Fillmore and 1,420 in Mission. We lat-
er perform robustness checks to make sure that our re-
sults are insensitive to these market sizes.

We specify the decision process of a consumer i,
whose trip destination is at block b∗i , and is interested
in parking for a duration of hi hours. Block b∗i is the
ideal parking location for consumer i, if parking is
free and available. Although we do not observe con-
sumers’ ideal locations, we estimate the distribution
of ideal locations of consumers as a function of busi-
ness densities over the set of blocks, Br, in region r:
The fraction of consumers whose ideal location is
block b is ωr(b), and

∑
b∈Br

ωr(b) � 1. Details of this
specification are in Section 5.1.

In our model, ideal locations and trip durations are
determined endogenously and do not change once a
customer has parked. Although there may be situa-
tions in which a customer is willing to change her des-
tination or duration based on congestion levels and
parking rates, these two variables are largely deter-
mined by the purpose of the trip. For example, the
destination of a consumer who plans to buy an iPhone
is the Apple store, and the duration of the trip is deter-
mined by the expected time it takes to shop and pur-
chase an iPhone.

We model consumers’ driving and parking behav-
ior as a series of decisions. We assume that each con-
sumer chooses among three options: (1) drive to the
region and search for on-street parking; (2) drive to
the region, but park directly in the public garage with-
out searching;5 or (3) choose an outside option, which
includes staying at home, using other modes of trans-
portation, or parking elsewhere.6

A consumer chooses the option that gives her the
highest expected utility. Without loss of generality,

Figure 2. (Color online) Business Density in 2011

(a) (b) (c)

Notes. (a) Marina. (b) Fillmore. (c) Mission.

Feldman, Li, and Tsai: Welfare Implications of Congestion Pricing
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–19, © 2021 INFORMS 5



we normalize the mean utility of the outside option to
zero. Customer i’s utility of the outside option is ui0 �
εi0 ≡ V o

i , where εi0 is an idiosyncratic shock to the
outside utility of customer i, which follows a normal
distribution with mean zero and standard deviation σ.

Consumer i obtains a mean trip value, virtd, from
driving to the region relative to the outside option, ir-
respective of whether she parks at the garage directly
or searches for on-street parking.We let the mean utili-
ty of driving be a linear function of the duration of
parking. Specifically, virtd � α+ βXrtdhi, where Xrtd

contains the intercept and dummy variables indicating
the time of day, day of week, and month. Even though
all parameters are region-specific, we omit the sub-
script r for parameters for brevity. We follow the litera-
ture on discretionary services and allow themean utili-
ty of driving to increase with trip duration (e.g.,
Anand et al. 2011 and Feldman and Segev 2020) and
assume that this function is linear.7 Keeping every-
thing else equal, longer trips provide greater utility to
the customer, and this increase in utility offsets the
parking costs, which also increase with trip duration.

Whether a consumer chooses to drive depends on her
mean utility, but also on her costs and the utility shock,
which, taken in sum, yield a nontrivial travel decision.

Customer i who decides to drive and park directly
at the garage obtains value virtd + εig from the trip,
where εig is an idiosyncratic shock to her utility from
parking at the garage, and follows the same distribu-
tion as εi0. The customer also incurs costs for walking
from the garage to her ideal location, b∗i , and the ga-
rage parking fee, which is based on the hourly park-
ing rate at the garage, Pbg , and the parking duration,
hi. Specifically, customer i’s utility for parking at the
garage is: uig � α+ βXrtdhi + εig − ηid(b∗i ,bg) −θiPbghi ≡
V garage

i , where ηi is customer i’s cost of walking one
block; d(b∗i ,bg) is the distance from the garage to her
destination in blocks, b∗i ;

8 and θi is customer i’s price
sensitivity. We assume that there is always an avail-
able parking space at the garage.9

Finally, a consumer who chooses to drive to the re-
gion and search for on-street parking would either
end up parking at a block that she finds available and
affordable, or could eventually decide to abandon

Table 1. Summary Statistics

Variable

Marina Fillmore Mission

Total High Mid Low Garage Total High Mid Low Garage Total High Mid Low Garage

Rate—Before 2.00 2.00 2.00 2.00 2.50 2.00 2.00 2.00 2.00 2.00 2.00 (–) 2.00 2.00 2.25
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (–) (0.00) (0.00) (0.25)

Rate—After 2.50 3.24 2.61 1.17 2.33 2.27 3.29 2.24 1.31 2.33 2.32 (–) 2.53 1.92 2.00
(0.97) (0.45) (0.68) (0.73) (0.47) (0.93) (0.27) (0.75) (0.68) (0.47) (0.78) (–) (0.65) (0.85) (0.41)

Occupancy—Before 0.74 0.83 0.74 0.58 0.13 0.70 0.84 0.69 0.57 0.26 0.62 (–) 0.63 0.58 0.12
(0.16) (0.11) (0.13) (0.16) (0.06) (0.19) (0.15) (0.16) (0.17) (0.13) (0.18) (–) (0.17) (0.18) (0.06)

Occupancy—After 0.73 0.81 0.75 0.56 0.19 0.69 0.82 0.70 0.56 0.23 0.66 (–) 0.68 0.63 0.12
(0.16) (0.12) (0.13) (0.15) (0.08) (0.20) (0.16) (0.16) (0.21) (0.14) (0.18) (–) (0.18) (0.18) (0.05)

No. of A-Type
Businesses—Before

8.68 9.17 7.22 11.25 (–) 16.07 39.90 9.80 7.90 (–) 20.72 (–) 25.89 7.43 (–)
(7.39) (11.77) (5.26) (2.63) (–) (36.76) (73.86) (10.26) (7.65) (–) (19.86) (–) (21.07) (5.71) (–)

No. of A-Type
Businesses—After

9.84 12.17 7.67 11.25 (–) 16.93 42.60 10.32 7.80 (–) 22.08 (–) 27.22 8.86 (–)
(9.70) (16.40) (5.36) (3.40) (–) (39.51) (79.68) (10.07) (8.12) (–) (21.52) (–) (23.23) (6.36) (–)

No. of B-Type
Businesses—Before

2.58 4.67 1.67 1.50 (–) 2.82 4.70 2.56 1.60 (–) 4.36 (–) 5.33 1.86 (–)
(3.32) (5.43) (1.22) (0.58) (–) (3.21) (4.47) (2.96) (1.17) (–) (3.41) (–) (3.38) (2.04) (–)

No. of B-Type
Businesses—After

2.58 4.33 2.11 1.00 (–) 2.87 4.40 2.76 1.60 (–) 4.48 (–) 5.44 2.00 (–)
(3.13) (5.16) (1.27) 0.00 (–) (3.20) (4.20) (3.17) (1.07) (–) (3.66) (–) (3.75) (2.00) (–)

No. of C-Type
Businesses—Before

2.32 3.17 2.11 1.50 (–) 2.04 2.20 2.00 2.00 (–) 3.36 (–) 4.17 1.29 (–)
(2.67) (3.92) (2.20) (1.29) (–) (2.41) (2.20) (2.53) (2.54) (–) (2.61) (–) (2.60) (1.11) (–)

No. of C-Type
Businesses—After

2.74 3.83 2.44 1.75 (–) 2.24 2.30 2.24 2.20 (–) 3.84 (–) 4.78 1.43 (–)
(2.84) (4.31) (2.19) (0.96) (–) (2.40) (2.16) (2.55) (2.49) (–) (2.67) (–) (2.51) (1.13) (–)

No. of D-Type
Businesses—Before

1.68 1.67 1.67 1.75 (–) 2.00 3.30 1.20 2.70 (–) 1.84 (–) 2.06 1.29 (–)
(1.73) (2.07) (1.87) (1.26) (–) (4.37) (6.43) (1.53) (6.46) (–) (1.70) (–) (1.70) (1.70) (–)

No. of D-Type
Businesses—After

2.21 2.50 1.89 2.50 (–) 2.42 3.80 1.56 3.20 (–) 2.28 (–) 2.83 0.86 (–)
(2.20) (3.21) (1.90) (1.29) (–) (5.02) (7.36) (1.94) (7.36) (–) (1.97) (–) (1.89) (1.46) (–)

No. of Blocks 19 6 9 4 1.00 45 10 25 10 1 25 0 18 7 2
No. of Space 329 100 153 76 205 739 123 453 163 920 861 0 616 245 448

Notes. Standard deviations are in parentheses. When calculating the occupancy rate, we excluded nonoperational hours for parking spaces when
applicable, for example, peak-time tow away zones. “Before” refers to our sample period before congestion pricing: April to July in 2011; “after”
refers to our sample period after congestion pricing: April to July in 2012. High-, medium-, and low-utilization blocks are defined using average
occupancy rate in 2011 (i.e., before SFpark) greater than 80%, between 60% and 80%, and below 60%, respectively. A-type business has one to
four employees, B-type business has five to nine employees, C-type business has 10–19 employees, and D+-type business has more than 20
employees.
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searching and either park at the garage or choose the
outside option (e.g., forgo the trip or park elsewhere).
If she parks on-street, she will obtain value virtd + εis,
where εis is an idiosyncratic shock to consumer i’s util-
ity from on-street parking, and follows the same dis-
tribution as εi0 and εig. Note that all utility shocks, εi0,
εig, and εis, are observable to the consumer, but not to
the researchers. As with garage parking, a consumer
who parks on-street pays for parking and incurs
search costs and the cost of walking to her destination
if she parks in another block.

4.1. Dynamic Spatial Search Model
4.1.1. States, Actions and Utilities. We derive the
model of search with congestion pricing, in which pri-
ces may vary across blocks and by time of day, day of
week, and month. Fixed pricing is a special case of
this model. On the kth search, consumer i arrives at
block bk, k � 1, 2, 3, :::. There are three actions, a, that
she can choose from: continue to search (a � 0), park
at the current block if there is a spot available (a � 1),
or stop searching for on-street parking (a � 2). She
chooses the option that gives her the highest expected
utility. The utility of each option depends on the fol-
lowing state variables, which are realized after con-
sumer i arrives to the block:

• bk: the block that the consumer arrives at on the kth
search;

• Prtdbk : the hourly parking price at block bk in region
r at time t on day d;

• Artdbk : the availability of block bk in region r at time
t on day d. Artdbk equals one if there is at least one park-
ing spot available, and zero otherwise;

• εirtdbk : the shock to the cost to search observed by
consumer i at block bk in region r at time t on day d.

Consumer i’s utility from choosing action a at block
bk is ui(bk,Prtdbk ,Artdbk ,εirtdbk ; a). We specify the utility
from each action below:

Consumer imay decide to stop searching for on-street
parking (a � 2). She then faces two options: park at the
garage or choose the outside option (e.g., give up the
trip completely, park at a private garage, etc.). She choo-
ses the option thatmaximizes her utility:10

ui(bk,Prtdbk ,Artdbk , εirtdbk ; 2) � max (V garage
i ,V o

i )
≡ V garage | o

i :

Alternatively, consumer i may decide to park on-street
(a � 1). Then, if the block is available—that is,
Artdbk � 1—she gets: ui(bk,Prtdbk , 1,εirtdbk ;1) � virtd + εis−
ηid(b∗i ,bk) −θiPrtdbkhi ≡ V park

i (bk,Prtdbk). If there is no
parking spot available in the block—that is,
Artdbk � 0—then she cannot park there and we denote
her utility from parking by negative infinity:
ui(bk,Prtdbk , 0,εirtdbk ;0) � −∞:

Finally, if consumer i decides to continue to search
(a � 0), she gets the expected utility:

ui(bk,Prtdbk ,Artdbk , εirtdbk ; 0)
� −siεirtdbk + E [ max

a�{0, 1, 2}
ui

(bk+1,Prtdbk+1 ,Artdbk+1 , εrtdbk+1 ; a)
| (bk,Prtdbk ,Artdbk , εrtdbk)

]
,

≡ −siεirtdbk + V search
i (bk,Prtdbk ,Artdbk , εirtdbk),

where si is consumer i’s per block search cost and εirtdbk
is the shock associatedwith the search cost si. That is, the
actual cost incurred if consumer i continues to search,
siεirtdbk , depends on both the per block search cost, si,
which is known to the consumer before searching, and
the search cost shock, εirtdbk , which is only realized after
she arrives at block bk. The shocks, εirtdbk , are indepen-
dent and identically distributed (i.i.d.) across consumers,
regions, time, day and blocks, and follow a standard log-
normal distribution (i.e., log(εirtdbk) follows the standard
normal distribution).11 The log-normal distribution
guarantees that the overall search cost siεirtdbk is nonneg-
ative (a customer would not give up an available park-
ing spot because she suddenly “enjoys” searching). The
expectation denotes the expected utility from continuing
to search once a customer arrives at block bk. It is taken
with respect to the conditional distribution of state varia-
bles in the next period (bk+1,Prtdbk+1 ,Artdbk+1 ,εirtdbk+1) given
the current state variables (bk,Prtdbk ,Artdbk ,εirtdbk).

A consumer that continues to search follows a
random-walk strategy (with no immediate return) and
will arrive at one of the adjacent blocks randomly. Ide-
ally, shocks would be specific to each of the adjacent
blocks. Although intellectually appealing, block-
specific shocks introduce three unobserved state varia-
bles (most blocks have three adjacent blocks at each
end) and increase the estimation complexity substan-
tially. Without much loss of generality, we introduce
one shock to the search cost, which captures, for exam-
ple, the general traffic condition that makes a consum-
er more or less willing to continue to search. To intro-
duce randomness to the search-path itself, a customer
who continues to search elects one of the adjacent
blocks randomly. The random-walk model allows for
idiosyncratic shocks that affect a consumer’s stopping
decision without overcomplicating the estimation.12

4.1.2. Evolution of States and Consumer Beliefs. As
we discussed, the evolution of the state variable bk fol-
lows a random walk with no immediate return. The
direction of driving at the initial block is generated
randomly, and there is an equal probability to transi-
tion from the current block to any of the adjacent
blocks.13 Let Brbk be the set of adjacent blocks accessi-
ble from the current block bk and |Brbk | be the number
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of adjacent blocks. The joint evolution of state varia-
bles Prtdbk and Artdbk depends on the region, time and
day, and the location of the current block. For the evo-
lution of the search cost shock, recall that εirtdbk is i.i.d.
across consumers, regions, times, days, and blocks
and is independent from Prtdbk and Artdbk . Therefore, if
a consumer decides to continue to search (i.e., a � 0),
the transition probability is:

Pr (bk+1,Prtdbk+1 ,Artdbk+1 ,εrtdbk+1 ;0 | bk,Prtdbk ,Artdbk ,εirtdbk)

�

1
|Brbk |

f P,Artdb (Prtdbk+1 ,Artdbk+1 |bk,Prtdbk ,Artdbk) f ε(εirtdbk+1),
if b ∈ Brbk

0,
otherwise;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where f P,Artdb and f ε are the density functions of the
state variables.

Consumers form rational expectations about the
price, availability, and search cost shock distributions.
A fully rational consumer would need to possess an
extreme level of sophistication: Not only would she
form rational expectations of the availability, price,
and search cost shock at each specific block, she
would also form rational expectations of the spatial
correlations of these state variables and would, there-
fore, update her belief about the distribution of these
state variables at a future block based on the observed
states of all previous blocks visited. This level of ratio-
nality is undesirable: Not only does it introduce a sub-
stantial computational burden to the estimation of a
dynamic model with multiple state variables, but this
level of rationality also expects too much from a con-
sumer. Instead of assuming full rationality, we simpli-
fy beliefs and decisions by letting consumers’ beliefs of
Prtdbk and Artdbk be i.i.d. across block bk. That is, consum-
ers still have different expectations about the price and
availability in different hours of a day, on different
days, and in different regions. However, within a re-
gion and at a given time t and day d, all blocks appear
ex ante the same. To explain, taking availability as an
example, a consumer forms an expectation that all
blocks have the same probability to be available and
that this expectation is consistent—it equals the ob-
served average probability of a block being available
across all blocks in the region at time t on day d. Specifi-
cally, φrtdb is the probability that block b is available (i.e.,
at least one spot is empty) in region r at time t on day d,
and φ̃rtdb is consumers’ belief of availability. Then,

φ̃rtdb �
∑

b∈Br
φrtdb

|Br| ≡ φrtd:

Of course, whether a consumer finds a block available
is based on the real-time availability of the block, rath-
er than on average availability. In other words,

consumers’ beliefs are correct on average, but not for
a particular instance. As with realized availability,
customers form rational expectations with respect to
prices. Consumers do not know whether the nearby
blocks are priced lower than the current block they
are at and only learn how much they will be paying
once they arrive at a specific block. In fact, as we show
later, the potential rate difference may motivate them
to search for better prices in new blocks.

Availability φrtdb is not directly observable but we
can derive it from block-level utilization by modeling
the block as an M=G=srb=0 loss system: srb is the num-
ber of parking spaces at block b, the number zero indi-
cates that the maximum queue length is zero (it is a
loss system), so that consumers who find that the
block is full do not wait in the block for a spot to be-
come available, the arrival rate to block b at time t on
day d is λrtdb and the mean parking time is 1=μrtdb. The
arrival rate follows a Poisson process, but the time
spent parking can follow any distribution. From the
Erlang loss formula, the probability that a consumer
can successfully park—that is, she is not “lost”—is:

φrtdb � 1−
λrtdb
μrtdb

( )srb
srb!

/∑srb
k�0

λrtdb
μrtdb

( )k
k!

: (1)

Because only a fraction φrtdb of arriving consumers
can be served, utilization is:

φrtdb �
φrtdbλrtdb

srbμrtdb
: (2)

Rearrange and substitute Equation (1) in Equation (2),
φrtdb is implicitly defined by:

φrtdb � 1−
φrtdbsrb
φrtdb

( )srb
srb!

/∑srb
k�0

φrtdbsrb
φrtdb

( )k
k!

: (3)

The expected value that a customer who continues to
search derives is:

V search
i (bk,Prtdbk ,Artdbk ,εirtdbk)
� E

[
max

a�{0,1,2}
ui(bk+1,Prtdbk+1 ,Artdbk+1 ,εrtdbk+1 ;a)

| (bk,Prtdbk ,Artdbk ,εrtdbk)
]

� E
[

max
a�{0,1,2}

ui(bk+1,Prtdbk+1 ,Artdbk+1 ,εrtdbk+1 ;a) |bk]
≡ V search

i (bk):

To explain, the expected value from search,
V search

i (bk), is a function of the current block, bk, and it
varies across consumers due to differences in parame-
ters and ideal locations. The second equality holds be-
cause consumers do not update their beliefs of price
and availability, and because the search shocks, εrtdbk ,
are i.i.d. across blocks.
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4.1.3. Optimal Decision Rule. Consumer i’s optimal
decision rule, a∗i (bk,Prtdbk ,Artdbk ,εirtdbk), can be charac-
terized as follows:

• If the current block is available—that is, Artdbk �
1—a consumer can choose from three potential actions:
continue to search (a � 0), park at the current location
(a � 1), or abandon on-street parking (a � 2). A consum-
er chooses the action that gives her the highest utility:

a∗i (bk,Prtdbk , 1,εirtdbk)

�

0, if − siεirtdbk +V search
i (bk)

>max (V garage | o
i ,V park

i (bk,Prtdbk))
1, if V park

i (bk,Prtdbk)
≥max (V garage | o

i , − siεirtdbk +V search
i (bk))

2, otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
• If the current block is unavailable—that is, Artdbk �

0—a consumer has two options to choose from: contin-
ue to search (a � 0) and stop searching (a � 2).

a∗i (bk,Prtdbk , 0,εirtdbk)

� 0, if − siεirtdbk +V search
i (bk) > V garage | o

i

2, otherwise:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Let u∗i (bk, Prtdbk , Artdbk , εirtdbk) �max a�{0, 1, 2} ui (bk, Prtdbk ,
Artdbk ,εirtdbk ; a) be the maximum utility a consumer
could get after she arrives at block bk. This utility de-
pends on whether the block is available and can be
computed recursively. Derivations of the utilities are
in Online Appendix A.

4.2. Choice of Driving
Finally, we discuss consumer i’s initial decision. In the
first stage, consumer i chooses among three options:
(1) drive to the region and search for on-street park-
ing; (2) drive to the region, but park directly at a pub-
lic garage; and (3) choose the outside option. We have
specified the utilities from the last two options in the
previous section. It remains to derive the expected
utility from the first option. The expected utility of
consumer i who decides to drive and search for
on-street parking is uis �max b1 ∈BrE(Prtdb1 , Artdb1 , εirtdb1 ) u

∗
i(b1,Prtdb1 ,Artdb1 ,εirtdb1), where b1 is the block from

which a consumer starts to search (k � 1). Consumer i
chooses an initial block b1 from the set of blocks in the
region, Br, to maximize her expected utility-to-go. The
expectation is taken over the state variables
(Prtdb1 ,Artdb1 ,εirtdb1) because they are unknown at the
time she makes the decision—consumer i only ob-
serves the realizations of these random variables after
she arrives at block b1.

In the first stage, consumer i chooses the option that
brings her the highest expected utility among uis,uig,
and ui0, where

uis �max
b1 ∈Br

E (Prtdb1 , Artdb1 , εirtdb1 ) u
∗
i (b1,Prtdb1 ,Artdb1 ,εirtdb1),

uig � virtd + εig − ηid (b∗i ,bg) −θiPbghi,
ui0 � εi0:

Because we assume identical and rational beliefs
across blocks, all blocks are ex ante the same, except
for their distance to the ideal location. Hence, consum-
er i’s best starting location is her ideal location b∗i . In a
version of the model in which beliefs are stratified
across blocks, consumers may not always choose their
ideal locations from which to start their search. For ex-
ample, a customer may want to start at a less con-
gested block located far from her ideal location, if she
has a high search cost and a low distance-disutility
cost. (See Online Appendix D.2 for details.)

5. Identification and Estimation
5.1. Destination Model
Prior to discussing how we identify and estimate the
model parameters, we describe the specification of the
destination distribution. We specify the distribution of
consumers’ destinations as functions of block-level
business densities in each region. Because we have an-
nual business-density data, we allow the distribution
of consumers’ destinations to vary by year; the sub-
script y accounts for potential changes in business den-
sity across years.14 The fraction of consumers whose
destination is block b in year y, ωry(b), is defined as:

ωry(b) �
exp (κ0

r + κA
r logN

A
ry(b) + κB

r logN
B
ry(b)

+ κC
r logNC

ry(b) + κD+
r logND+

ry (b))∑B
b�1exp (κ0

r + κA
r logN

A
ry(b) + κB

r logN
B
ry(b)

+ κCr logNC
ry(b) + κD+

r logND+
ry (b))

,

where logNA
ry, logN

B
ry, logN

C
ry and logND+

ry are vectors of
the log scaled numbers of businesses of size A (one to
four employees), B (five to nine employees), C (10–19
employees), and D+ (20 employees and above) for
region r in year y, respectively. This specification guar-
antees 0 ≤ ωry(b) ≤ 1, and

∑B
b�1ωry(b) � 1. We normal-

ize κ0 to zero without loss of generality. The parame-
ters left to be estimated are κA

r , κ
B
r , κ

C
r , and κD+

r for
each region.

The establishments of the businesses are largely ex-
ogenous, as they are primarily determined by factors
such as availability of commercial real estates, zoning
restrictions, licensing requirements, etc. Therefore,
they should be little affected by the change of the
parking policy or the anticipation of it. Moreover, al-
though changes in destination popularity may lead to
business openings or closures, these changes are slow
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in nature. Indeed, we find minimal changes in the
number of businesses from the year 2011 to 2012; the
correlation of the number of businesses across the two
years is more than 94% for all regions under study, on
par with other regions in the city for which the park-
ing policy did not change.

5.2. Identification
The identification of the destination model is straight-
forward. The distribution of ideal locations, v, is a
function of business densities. The exogenous varia-
tions in business densities across blocks identify the
parameters in the destination model (i.e., κA, κB, κC

and κD+). We identify consumer attributes by exploit-
ing parking patterns in the fixed-pricing and
congestion-pricing periods. The three key consumer
attributes in which we are interested are search cost,
distance disutility, and price sensitivity.

Similar to Hortaçsu and Syverson (2004), Hong and
Shum (2006), and Kim et al. (2010), even though we
do not directly observe consumers’ search paths, we
are able to identify search costs and other relevant pa-
rameters.15 We explain which variations in our data
drive the identification of each parameter:

5.2.1. Separation of Price Sensitivity from Search Cost
and Distance Disutility. Price sensitivity is identified
through the exogenous variation of prices from the
SFpark program and the resulting variations in park-
ing locations. To illustrate, consider a simple case
with one block and one garage in the region.

Naturally, in this case, the block is the ideal location
for all consumers, but some will have to park at the ga-
rage on a congested day. What differentiates on-street
from off-street parking is the parking fee and the dis-
tance disutility. Although the distance disutility does
not change before and after the implementation of con-
gestion pricing, the parking fee does. When the
on-street price increases following the implementation
of congestion pricing, more consumers park at the ga-
rage and fewer park on-street, and vice versa. The ex-
tent to which price changes can induce the reallocation
of parking between on- and off-street identifies price
sensitivity (relative to distance disutility).

5.2.2. Separation of Search Cost from Distance
Disutility. There are two sources of variation that sepa-
rate search cost and distance disutility. The first is the
extent to which demand shifts to the garage rather
than to nearby, less congested blocks. By choosing to
park at the garage, a consumer avoids an additional
search cost, but usually incurs a greater walking dis-
tance to her destination. By choosing to continue to
search, a consumer incurs the search cost, but may re-
duce the walking distance, if she finds a parking space
nearby. Therefore, if we observe that parking demand

shifts to the garage rather than to nearby, less con-
gested blocks, we can infer that consumers are rela-
tively more sensitive to the inconvenience induced by
search than to walking.

The second source of variation stems from the im-
perfect correlation between the change in search cost
and the respective change in walking distance. If a
consumer chooses to continue to search, the total
number of blocks searched always increases by one,
regardless of which nearby block she visits next. How-
ever, the walking distance between the next block and
her destination may increase or decrease depending
on the path she takes (see Figure 3).16 This seemingly
subtle variation comes from the fact that the search is
conducted on a two-dimensional space. If, instead, the
search was conducted on a unidimensional line, then
the number of blocks searched would perfectly corre-
late with the distance from the ideal location. In this
case, it would be more difficult to determine whether
a redistribution of demand is caused by aversion to
search or to walking.

5.3. Moment Conditions
The primitives of the model that we wish to estimate
are: coefficients of the destination model, k; trip-
valuation parameters, α and β; the joint distribution of
search cost, distance disutility, and price sensitivity,
(si, ηi, θi); and the standard deviation of the utility
shocks, σ . We assume that the joint distribution of
(si,ηi,θi) follows a multivariate lognormal distribution
lnN(μs,η,θ,Ws,η,θ), where μ and W are the mean and the
variance-covariance matrix of the corresponding nor-
mal distribution. All parameters are region-specific.
We jointly estimate ideal-location distributions and the
consumer-attribute parameters using data from both
the fixed-pricing and congestion-pricing periods. We

Figure 3. (Color online) Identification Illustration: Separate
Search Cost and Distance Disutility
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then use the ideal-location distributions and the con-
sumer attributes that we estimated as inputs for the
counterfactual analyses.

By estimating the joint distribution, we allow a con-
sumer’s search cost, distance disutility, and price sensi-
tivity to be correlated, and we estimate the correlations
empirically. Let H � (μs,η,θ,Ws,η,θ,α,β,σ,κ). Because
the scale of utility is irrelevant to choices, not all pa-
rameters can be identified. Consumers compare rela-
tive values among options, so the exact scale of utility
is irrelevant, and the parameters are estimated relative
to a parameter that is normalized to one. To measure
welfare in dollars, we choose to normalize the mean
price sensitivity to one.

We use Simulated Method of Moments (SMM) to
estimate Q. First proposed by McFadden (1989), SMM
is conceptually identical to the more commonly used
Generalized Method of Moments, except that with
SMM, the moments are calculated by using model-
based simulations, rather than directly from the mod-
el. Specifically, we calculate the differences between
the observed and the simulated outcomes for the
fixed- and congestion-pricing periods, given exoge-
nous variables V and parametersQ, as:

g(V ;H) �

q fixed
rtd (b) − q̃fixedrtd (b;H)

Q fixed
rtd (b) − Q̃

fixed
rtd (b;H)

q dynamic
rtd (b) − q̃dynamic

rtd (b;H)
Q dynamic

rtd (b) − Q̃
dynamic
rtd (b;H)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

∀t, d, b � {1, 2, :::, |Br|, g},
where q is the number of people who park, Q is the to-
tal minutes parked at each block b or in the garage g
(Q and q are observed outcomes, and Q̃ and q̃ are sim-
ulated outcomes), and V is the matrix of indicators for
each block/the garage, month (May, June, and July),
weekend, and hour (morning, noon, and afternoon).
We estimate the parameters Ĥ based on these orthog-
onality conditions:

E[V′g(V ;H)] � 0: (4)

We have ( |B| + 1) × 4 × 7 moment conditions overall.
(See Online Appendix B for details on the estimation
procedure.)

6. Estimation Results, Welfare Analysis,
and Robustness Tests

In this section, we report the estimated availability,
ideal-location distributions, and model parameters.
Using the estimates, we calculate welfare changes
from before and after the implementation of conges-
tion pricing. Finally, we perform multiple sets of
robustness tests to ensure that our results are driven
by data variations rather than by specific modeling
assumptions.

6.1. Estimation Results
We calculate real-time availability for each hour and
each block in our sample periods using occupancy
data obtained from the parking sensors. Table 2 sum-
marizes the availability estimates for high-, medium-,
and low-utilization blocks in each region during the
before and after periods. The estimates show similar
patterns as the occupancy rates in Table 1.

We also estimate the per-block price sensitivity,
search cost, and distance disutility; their covariance
matrix; the four parameters in the destination model;
and the seven parameters that affect trip valuation.
Table 3 presents the results.

To interpret the magnitudes of the estimated coeffi-
cients, we convert the estimates of search cost and dis-
tance disutility to dollar values. In the main specifica-
tion, for example, we estimate that it costs a median
consumer in Marina approximately $3.96 to search an
additional block and $3.10 to park one block away
from their destination (all measured by first and third
quartiles). We obtain similar estimates for the other
two regions. We also examine the estimated correla-
tions between search cost, distance disutility, and
price sensitivity. As expected, less price-sensitive con-
sumers also value their time more (there are negative
correlations between price sensitivity and search
costs). Moreover, customers who dislike search also
dislike parking farther away from their destinations

Table 2. Summary of Availability Estimates

Variable

Marina Fillmore Mission

Total High Mid Low Garage Total High Mid Low Garage Total High Mid Low Garage

Availability—Before 0.92 0.88 0.93 0.98 1.00 0.92 0.86 0.93 0.96 1.00 0.99 (–) 0.99 0.99 1.00
(0.06) (0.06) (0.05) (0.03) (0.00) (0.07) (0.09) (0.06) (0.04) (0.00) (0.02) (–) (0.02) (0.06) (0.00)

Availability—After 0.93 0.89 0.93 0.98 1.00 0.92 0.87 0.93 0.96 1.00 0.98 (–) 0.98 0.97 1.00
(0.06) (0.07) (0.05) (0.02) (0.00) (0.08) (0.09) (0.07) (0.04) (0.00) (0.03) (–) (0.02) (0.03) (0.00)

Notes. Standard deviations are in parentheses. High-, medium-, and low-utilization blocks are defined using average occupancy rate greater
than 80%, between 60% and 80%, and below 60%, respectively. “Before” refers to our sample period before congestion pricing: April to July in
year 2011, “after” refers to our sample period after congestion pricing: April to July in year 2012.
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(there is a positive correlation between search cost
and distance disutility).

Based on the estimated model, we calculate the av-
erage price elasticity (i.e., percentage change in a
block’s occupancy rate as a result of 1% change in its
price) to be −0.36, −0.24, and −0.35 for Marina, Fill-
more, and Mission, respectively. Interestingly, the es-
timates are of the same magnitude as those reported
in Pierce and Shoup (2013) and Ottosson et al. (2013)
(from −0.8 to −0.4). To evaluate model fit, we compare

predicted and observed moments for each block.
Figure A.4 in the online appendix demonstrates a close
moment fit by blocks. We also calculate the amount of
variation in the observed moments that can be ex-
plained by the model. At the hourly level, the model
explains an average of between 22% and 40% of the
variations in the data. Lastly, we conduct in-sample
and out-of-sample analyses by randomly selecting two-
thirds of time and day in each region to be used for the
in-sample analysis and the remaining one-third for out-
of-sample analysis. The in-sample R2 values are
42.15%, 40.65%, and 21.17% for Marina, Fillmore, and
Mission, respectively, while the out-of-sample R2 val-
ues are 40.63%, 39.03%, and 21.79% for each region,
respectively.

6.2. Welfare and Search Externality
6.2.1. Welfare. Using the model estimates, we quanti-
fy the effect of congestion pricing on both consumer
and social welfare. We denote the actual utility that
consumer i obtains by u actl

i , the actual parking loca-
tion for consumer i by:

b actl
i �

b, if consumer i parks at block b

eventually, b ∈ Br;

bg, if consumer i parks at the

garage eventually;

o, if consumer i chooses the outside

option eventually;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and the actual number of searches that consumer i has
made by Ni. Then,

u actl
i �

virtd+εis−Ni
∑Ni

k�1si εirtdbk
( )

− ηid(b∗i ,b actl
i )−θiPrtdb actl

i
hi, if b actl

i � b, b ∈Br;

uig−Ni
∑Ni

k�1si εirtdbk
( )

, if b actl
i � bg;

ui0−Ni
∑Ni

k�1si εirtdbk
( )

, if b actl
i � o:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We calculate consumer surplus, CS, and social welfare,
SW, as CS � ∑Mr

i�1u
actl
i θi( )−1 and SW � CS+∑Mr

i�1Prtdbactli
hi:

Following the literature (see Meijer and Rouwendal
2006 and references therein), we divide utility by
price sensitivity, θi, such that welfare is expressed in
dollar values. As is customary, in calculating social
welfare, we view parking payment as a transfer
from consumers to the government, which is then
distributed back to the local community in vari-
ous ways.

We report welfare and search traffic in Table 4. Note
first that although customers search for an available
parking spot irrespective of the pricing strategy, conges-
tion pricing introduces another type of search—search

Table 3. Model Estimates

Variable Marina Fillmore Mission

Search cost (log-scaled) mean 1.38*** 0.78*** 0.98***
(0.11) (0.10) (0.09)

Search cost (log-scaled) SD 1.22*** 1.07*** 1.87***
(0.13) (0.13) (0.06)

Distance disutility (log-scaled) mean 1.14*** 2.07*** 1.72***
(0.10) (0.08) (0.07)

Distance disutility (log-scaled) SD 0.05* 0.05** 0.23***
(0.03) (0.02) (0.03)

Price sensitivity (log-scaled) mean Normalize to 0
Price sensitivity (log-scaled) SD 0.90*** 0.29** 0.52***

(0.10) (0.13) (0.07)
ε SD 0.90*** 0.74*** 0.11

(0.10) (0.21) (0.21)
Search cost × distance disutility corr 0.00 −0.02 0.07***

(0.01) (0.03) (0.02)
Search cost × price sensitivity corr −1.51*** −1.86*** −1.81***

(0.10) (0.09) (0.08)
Distance disutility × price sensitivity

corr
0.60*** 0.60*** 0.46***

(0.09) (0.05) (0.07)
Trip valuation—α 4.51*** 3.17*** 3.61***

(0.39) (0.28) (0.24)
Trip valuation—intercept 9.74*** 6.37*** 7.15***

(0.63) (0.41) (0.32)
Trip valuation—May Baseline
Trip valuation—June 0.10 −0.38*** 0.24***

(0.16) (0.09) (0.09)
Trip valuation—July 0.13 −0.02 0.30***

(0.16) (0.09) (0.10)
Trip valuation—Weekday Baseline
Trip valuation—Weekend −0.31** 2.04*** 1.37***

(0.15) (0.02) (0.13)
Trip valuation—morning Baseline
Trip valuation—noon 0.06 0.58*** 0.59***

(0.16) (0.10) (0.10)
Trip valuation—afternoon 0.39** 0.96*** 0.62***

(0.17) (0.13) (0.10)
Destination Model—κA −0.34*** −0.11*** 0.20***

(0.03) (0.01) (0.02)
Destination Model—κB 0.56*** 0.47*** −0.01

(0.04) (0.02) (0.02)
Destination Model—κC −0.34*** 0.23*** 0.04**

(0.05) (0.02) (0.02)
Destination Model—κD+ 0.21*** −0.05 −0.18***

(0.04) (0.31) (0.02)

Search cost dollar value $3.96 $2.19 $2.67
Distance disutility dollar value $3.10 $7.98 $5.60

Notes. The dollar value interval displays the median of the distribu-
tion over commuters. Standard errors in parentheses.

*p < 0.10; **p < 0.05; ***p < 0.01.
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for a better price. That is, due to the lack of complete
information about prices, customers who find an avail-
able spot at a higher than expected price may forgo
that space and continue searching, thereby increasing
costs (see Table 4B). Although we find that in the re-
gions we examined the cost to search for an available
parking spot outweighs the cost to search for a better
price, it is possible that in cities or regions with more
price-sensitive customers, prices will be more dis-
persed, and the search for prices may be more perva-
sive, increasing price-based search cost. Policy makers
should therefore account for this cost when consider-
ing a change in pricing strategy.

In the main specification, following the implementa-
tion of congestion pricing, consumer surplus increased
by $41.05 and $19.50 per 100 consumers, an equivalent
of 55.39% and 25.44% of total payment, in Marina and
Fillmore, respectively. However, consumer surplus de-
creased by $31.76 per 100 consumers, an equivalent of
45.02% of total payment, in Mission. We observe the
same directional changes in social welfare.

From where do the differences in welfare originate?
In Marina and Fillmore, following the implementation
of congestion pricing, consumers incur much lower
search costs and lower distance disutility, which offset
the increase in payments.

The same does not hold in the Mission district.
There, the implementation of congestion pricing in-
creased not only total payment, but also search costs
and distance disutility. Several effects may contribute
to the increase in search costs and distance disutility.
First, congestion pricing does not only decrease conges-
tion of highly popular blocks, it also increases conges-
tion at low-utilization blocks—high prices in popular
blocks lead more customers to less-congested blocks in
search for a better price, but this results in increased

congestion in these blocks. The increase in congestion
may increase both search costs—search for a better
price and search for availability in less-congested re-
gions due to the externality imposed by consumers
searching for a better price) and distance disutility. Sec-
ond, consumers may find it less attractive to drive to
their destination if they anticipate higher prices.

The overall effect is that both social welfare and
consumer surplus decrease. The inconsistent welfare
implications in different regions highlight the critical
tradeoff between the desire for high utilization and
the aversion for congestion. From the perspective of
resource utilization, social planners would like to at-
tract as many customers as possible and keep utiliza-
tion high. However, high utilization generates conges-
tion, which reduces the utility that each consumer
obtains from accessing the resource. We further exam-
ine the reasons that congestion pricing leads to lower
welfare in Mission, as well as pricing policies that
may increase welfare, in Section 7.1.

Finally, following the implementation of conges-
tion pricing, the total number of searches decreased
by 37.8% and 10.96% in Marina and Fillmore, respec-
tively. Although we do not have traffic data, these
numbers suggest that the program contributes to a re-
duction in traffic levels. Decreased traffic has implica-
tions on gas usage, pollution, and accidents, all of
which are likely to decrease as well, contributing to a
more sustainable world. In addition to the negative
externalities that congestion pricing helps mitigate, it
may also result in positive externalities. For example,
better parking availability may have implications on
the economics of local businesses in these regions. In
Online Appendix C, we study heterogeneous welfare
impacts depending on consumers’ price sensitivity
and destinations.

Table 4. Welfare and Search Externality

Variable

Marina Fillmore Mission

Before
(uniform pricing)

After
(SFpark pricing)

Before
(uniform pricing)

After
(SFpark pricing)

Before
(uniform pricing)

After
(SFpark pricing)

Panel A: Welfare calculations

Distance Disutility 84.42 71.94 527.45 519.69 47.43 58.36
Search Cost 71.94 47.41 156.41 139.60 2.87 8.74
Payment 74.12 91.92 76.64 85.90 70.54 75.11
Trip Valuation 689.09 710.93 1178.60 1182.79 692.36 681.97
Consumer Surplus Change 41.05 19.50 −31.76
Social Welfare Change 58.86 28.76 −27.18

Panel B: Summary statistics of consumer actions and search traffic

Go with the Car (%) 50.19 48.22 51.62 50.10 50.44 48.61
Park at Garage (%) 4.95 5.63 14.07 14.55 2.84 3.66
Search Availability (%) 13.23 8.04 14.84 13.03 0.51 1.40
Search Price (%) 0.00 0.18 0.00 0.18 0.00 0.34
Total # of Searches 13.23 8.22 14.84 13.21 0.51 1.74

Notes. Consumer surplus is normalized to dollar value at the size of 100 consumers. Results are based on 50 rounds of simulations.
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6.3. Robustness Tests
We conduct multiple robustness tests to ensure that
our results are not driven by specific modeling as-
sumptions. We evaluate the robustness of our results
along the following dimensions. (1) Market size: To en-
sure that our results are not sensitive to the choice of
market size, we perform the analyses for several mar-
ket sizes (Online Appendix D.1). (2) Consumers’ be-
liefs: Rather than assuming that consumers’ beliefs re-
garding availability and price are identical across
blocks at a given time and day in a region, we allow
consumers to form different beliefs depending on the
levels of congestion (Online Appendix D.2). (3) Updat-
ing beliefs: We allow consumers to update their beliefs
about availability if they arrive at the ideal location
and find it unavailable Online Appendix D.3). (4)
Parking-duration distribution: Because of the irregu-
larities observed in the distribution of parking dura-
tions (details explained in Online Appendix B), we
draw parking durations from the observed empirical
distribution. The observed distribution is censored. To
see whether censoring may affect our conclusions, we
simulate different distributions of parking duration
based on different censoring levels and introduce ad-
ditional noise (Online Appendix D.4). Our conclusions
regarding welfare and search traffic changes are robust
to all these alternative specifications.

7. Counterfactual Analyses
We conduct three counterfactual analyses: We exam-
ine what alternative pricing policies may lead to wel-
fare improvement for uncongested regions such as
Mission. We examine simpler pricing structures to
balance availability-based and price-based searching.
Finally, we test how congestion pricing compares to
the commonly used policy that limits parking dura-
tion, but keeps prices fixed.

7.1. Pricing in Uncongested Regions
Recall that the congestion-pricing policy implemented
by SFpark lowered consumer and social welfare in Mis-
sion. A critical difference betweenMission and the other
two regions is that Mission was not very congested,
even before the implementation. Table 1 shows that
even before the implementation of the program, no
block in Mission was classified as “high” occupancy.
The average occupancy rate was 62%, with all blocks re-
porting below 70% in the before period (April to July
2011).17 To compare, before the SFpark programwas im-
plemented, the average occupancy rate in Marina was
74% and in Fillmore 70%. We also find that occupancy
rates are less dispersed geographically in Mission com-
pared with the other regions. This suggests that the pri-
mary focus in Mission should not be to reallocate de-
mand across blocks, but to increase block utilization.

We therefore hypothesize that lower parking rates may
increase welfare inMission, by increasing the fraction of
consumerswho drive to the destination.

Specifically, we consider two counterfactuals with
lower prices: (1) uniform pricing, where each block is
priced equally at a rate that is $0.50 lower than the aver-
age price charged during the after period; and (2) con-
gestion pricing, inwhich each block is priced $0.50 lower
compared with the corresponding price during the after
period for that block. Lower parking rates introduce a
tradeoff: They impact parking costs and enticemore con-
sumers to drive. At the same time, the increase in de-
mand leads to more traffic and congestion, which make
driving less desirable. In uncongested areas with low
utilization, availability may remain high, even when uti-
lization increases. Therefore, decreasing prices in such
areas could be beneficial if the gain from increased utili-
zation dominates the negative impact of congestion. In
overly congested areas, lower rates result in increased
congestion without a welfare gain, because availability
drops dramatically as utilization increases. We find the
new equilibrium following procedures presented in On-
line Appendix D,with results shown in Table 5.

We show that lower parking rates increase consumer
and social welfare under uniform pricing with lower
rates. Much of the gain can be attributed to higher frac-
tions of consumers driving to the destination—that is,
52%–54%, as opposed to 49%. Even though consumers
incur slightly higher search costs or park farther away,
the social gain from the increased total trip valuation
more than offsets losses in search costs and distance
disutility, confirming our intuition that when the re-
gion is underutilized, demand reallocation is secondary
to the benefit gained from increased utilization. This re-
sult illustrates that it is important to determinewhether
congestion is a real concern in the region. If it is not,
then alternative policies aimed at increasing utilization
may lead to more desirable outcomes. With congestion
pricing, even when the rates are lower, consumer sur-
plus and social welfare decrease. This is because incom-
plete information on availability and prices cause con-
sumers to park farther away from their ideal locations
and results in higher congestion in some blocks, addi-
tional searches, and increased disutility costs.

The results of the counterfactuals combined high-
light the importance of treating different types of re-
gions strategically differently. Policies that work well
in highly congested areas, such as congestion pricing,
may not work well in underutilized regions, even if
the price levels are lower. These areas lend themselves
to fundamentally different policies.

7.2. Comparing Simple and Complex
Pricing Policies

The complexity of a pricing strategy, along with the
uncertainty it brings, may cause congestion-pricing
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strategies to fail (Bonsall et al. 2007). In our setting, a
complex pricing strategy may lead consumers to
adopt inefficient search strategies with regard to
where to start and where to search. It may also induce
search for better prices. To see if a simpler pricing
structure may lead to higher welfare, we examine a
pricing policy with only three price levels, each corre-
sponding to the high-, medium-, and low-utilization
blocks, respectively. Given that there are only three
price levels, it is likely that consumers have perfect in-
formation about prices, which is what we assume. To
allow for a fair comparison, we set each of the three
price levels to equal the average price observed for
high-, medium-, and low-utilization blocks. We keep
the rate constant for the entire study period, regard-
less of the time of the day and day of week.

We solve for the equilibrium under the three-tier
pricing policy. The results, presented in Table 6, sug-
gest that the simpler pricing policy achieves higher so-
cial welfare and consumer surplus in all three regions,
compared with the more complex congestion-pricing
policy currently in place. Much of this gain can be at-
tributed to higher trip valuation. Moreover, the sim-
pler pricing policy further reduces total search traffic
by 0.13% points (or 1.00%) in Fillmore, relative to con-
gestion pricing.

Even with the simpler pricing policy, the social and
consumer welfare are lower than with fixed pricing in
the Mission, which, as we argued earlier, illustrates
that the primary focus in Mission should not be to
reallocate demand across blocks through differentiat-
ed pricing, but to increase utilization.

7.3. Usage Limits vs. Congestion Pricing
The regulation approach (e.g., usage limits or permits)
and the market-based approach (e.g., price-based ap-
proach) are the two most commonly used approaches
in managing public resources. In city parking, most

local governments impose parking-duration limits to
regulate the usage of public parking spaces, but some
have recently used congestion pricing to match de-
mand with limited supply. For example, the City of
San Francisco previously imposed two-hour parking
limits on most blocks, but relaxed the limit to four
hours when it decided to pilot the new congestion-
pricing program in April 2011—that is, the start of the
before period. To compare the two approaches, we ex-
amine the counterfactual of fixed pricing with a two-
hour parking limit. In this case, if a consumer wants to
park for more than the two-hour limit, she has three
options: she could compromise and park for up to two
hours on-street, park at the garage for the entire time
demanded, or choose the outside option. A consumer
will choose the option that maximizes her utility.

Consumers that require long parking durations
tend to value the trip more. Limiting their parking du-
ration or blocking them altogether harms welfare by
decreasing overall trip valuation. At the same time,
usage limits increase availability because they exclude
consumers who demand long parking durations, and
possibly allow parking spaces to be utilized by more
consumers who require short parking durations.
Therefore, the overall effect of usage limits on welfare
depends on whether the gain from better availability
offsets the loss in trip valuation.

Table 7 illustrates that the resulting social welfare
with congestion pricing is higher in all regions com-
pared with the social welfare achievedwith time limits.
The results have an intuitive explanation. To maximize
social welfare, a social planner would allocate the park-
ing spaces to consumers who value them the most.
Congestion pricing aims at doing exactly that—by
charging different prices based on congestion, the poli-
cy allocates the more desired spots to high-value cus-
tomers (customerswith higher trip valuation and lower
search costs, distance disutility, and price sensitivity).

Table 5. Welfare and Search Externality with Lowering Prices Uniformly by $0.50

Variable
Before

(uniform pricing)
After

(SFpark pricing)
Counterfactual I

(uniform pricing $0.50 lower)
Counterfactual II

(SFpark pricing $0.50 lower)

Panel A: Welfare calculations

Distance Disutility 47.43 58.36 51.67 60.54
Search Cost 2.87 8.74 4.78 9.34
Payment 70.54 75.11 57.16 62.57
Trip Valuation 692.36 681.97 700.76 692.13
Consumer Surplus Change −31.76 15.63 −11.83
Social Welfare Change −27.18 2.25 −19.80

Panel B: Summary statistics of consumer actions and search traffic

Go with the Car (%) 50.44 48.61 53.95 52.02
Park at Garage (%) 2.84 3.66 2.91 3.91
Search Availability (%) 0.51 1.40 0.91 1.64
Search Price (%) 0.00 0.34 0.00 0.44
Total # of Searches 0.51 1.74 0.91 2.08

Notes. Consumer surplus is normalized to dollar value at the size of 100 commuters. Results are based on 50 rounds of simulations.
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Prices are only a transfer, so they do not affect social
welfare.

By contrast, imposing limits on parking durations
makes consumers who want to park longer particu-
larly worse off, because they are forced to park for a
shorter time or seek alternative options that are less
desirable. This is especially problematic if consumers’
values for the trip are positively correlated with the
length of the trip, implying that drivers who value the
trip more will likely be hurt the most. Therefore, con-
gestion pricing leads to a more efficient allocation
compared with time limits, and we would expect so-
cial welfare to be higher with congestion pricing com-
pared with time limits, as we indeed observe.

The comparison of consumer surplus is less intuitive,
because the prices charged affect consumer surplus.

That introduces a tradeoff: Although congestion pric-
ing can allocate demand more efficiently, it does so by
charging higher prices on average, and these higher
prices (compared with the lower uniform price) influ-
ence consumer surplus negatively. Which effect domi-
nates depends on many factors, such as the time limits
imposed, the levels and spread of prices, and market
and consumer characteristics. Indeed, we find that the
effect on consumer surplus is ambiguous.

Relatedly, in a queueing model, in which customers
choose their time in service, for which parking is a
good example, Feldman and Segev (2020) show that
to maximize consumer surplus, a social planner
should set the price to zero, but impose time limits.
We find a similar result. When comparing congestion
pricing with a two-hour time limit in which parking is

Table 7. Welfare and Search Externality with 2-Hour Usage Limit

Variable

Marina Fillmore Mission

After
(SFpark pricing)

2-hour limit
(uniform pricing)

After
(SFpark pricing)

2-hour limit
(uniform pricing)

After
(SFpark pricing)

2-hour limit
(uniform pricing)

Panel A: Welfare calculations

Distance Disutility 71.94 64.80 519.69 505.29 58.36 33.42
Search Cost 47.41 50.84 139.60 138.59 8.74 1.77
Payment 91.92 66.88 85.90 72.56 75.11 63.74
Trip Valuation 710.93 640.84 1182.79 1159.29 681.97 642.48
Consumer Surplus Change −41.32 5.26 3.79
Social Welfare Change −66.37 −8.09 −7.58

Panel B: Summary statistics of consumer actions and search traffic

Go with the Car (%) 48.22 50.43 50.10 51.66 48.61 50.10
Park at Garage (%) 5.63 3.89 14.55 13.60 3.66 2.20
Search Availability (%) 8.04 10.68 13.03 13.39 1.40 0.34
Search Price (%) 0.18 0.00 0.18 0.00 0.34 0.00
Total # of Searches 8.22 10.68 13.21 13.39 0.51 1.74

Notes. Consumer surplus is normalized to dollar value at the size of 100 commuters. Results are based on 50 rounds of simulations. Consumer
surplus and social welfare changes are evaluated relative to the after periodwith congestion pricing.

Table 6. Welfare and Search Externality with Three-Tier Pricing

Variable

Marina Fillmore Mission

Before
(uniform pricing)

Counterfactual
(3-tier pricing)

Before
(uniform pricing)

Counterfactual
(3-tier pricing)

Before
(uniform pricing)

Counterfactual
(3-tier pricing)

Panel A: Welfare calculations

Distance Disutility 84.42 83.19 527.45 520.90 47.43 58.50
Search Cost 71.94 69.86 156.41 176.85 2.87 8.73
Payment 74.12 105.51 76.64 100.85 70.54 71.50
Trip Valuation 689.09 778.17 1178.60 1237.50 692.36 683.66
Consumer Welfare Change 61.01 20.81 −26.60
Social Welfare Change 92.41 45.01 −25.63

Panel B: Summary statistics of consumer actions and search traffic

Go with the Car (%) 50.19 48.31 51.62 49.76 50.44 49.62
Park at Garage (%) 4.95 4.82 14.07 13.75 2.84 3.32
Search Availability (%) 13.23 8.66 14.84 13.08 0.51 1.48
Search Price (%) 0.00 0.00 0.00 0.00 0.00 0.20
Total # of Searches 13.23 8.66 14.84 13.08 0.51 1.68

Notes. Consumer surplus is normalized to dollar value at the size of 100 commuters. Results are based on 50 rounds of simulations.
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free, we find that social welfare is higher with conges-
tion pricing in all regions, but that consumer surplus
is higher with time limits, but a zero price. Regardless,
both the market-based congestion-pricing policy, and
the regulation-based approach of limiting parking
time, are strategies designed to control congestion and
are likely to decrease utilization. It is imperative to
think carefully whether—and, if so, how—to correctly
implement them, and the decision depends on the ob-
jective that the social planner tried to maximize, as
our results suggest.

8. Conclusion
Congestion pricing is often considered as an effective
tool to match supply with demand. Using data from
SFpark, we find evidence that congestion pricing helps
to increase parking availability in congested areas, re-
duces search costs, and allows consumers to park clos-
er to their destinations when they need to. These bene-
fits outweigh the increased payments and lead to an
overall increase in consumer surplus and social wel-
fare. Interestingly, we find that congestion pricing can
sometimes reduce consumer and social welfare. This
happens in areas with relatively low congestion levels,
in which improving the overall utilization by setting a
proper price level is often more important than reallo-
cating demand by charging variable prices. One solu-
tion does not fit all. Therefore, city governments
should not apply congestion pricing blindly. Rather,
they should diagnose and address the primary con-
cern of each region separately.

Our results also highlight that cities that consider im-
plementing congestion-pricing policies should avoid
setting unnecessarily complex pricing rules. Even
though congestion pricing is intended to reduce search
and traffic and increase availability, complicated poli-
cies limit consumers’ ability to remember and process
information and can lead to inferior decisions. We
show that to achieve the best welfare outcome, it is im-
portant to balance the desired availability targets with
the complexity of the pricing policy—implementing a
simpler three-tier pricing policy may be sufficient.

More generally, our learnings from SFpark offer im-
portant lessons to other public sectors. Both
regulation-based and market-based approaches have
been used in many public sectors. We provide evi-
dence that the market-based congestion-pricing ap-
proach generates higher social welfare than the
regulation-based usage-limit approach, because con-
gestion pricing tends to allocate resources to consum-
ers who value them the most, while usage limits may
hurt these consumers more. Although policy decisions
are often multifaceted, and it is difficult to account for
and measure all possible factors at play, our analysis
offers a generalizable methodology and quantifiable

results that public-sector managers can use to better
evaluate the tradeoffs involved.

Endnotes
1 Before the implementation, the garage hourly parking rate ranged
from $2 to $2.50. After the implementation, the hourly rate was
raised by $0.50 for blocks with occupancy rates above 80% and low-
ered by $0.50 for blocks with occupancy rates below 40%.
2 Even during these periods, there were some occasional meter fail-
ures. We exclude these from the calculation of occupancy rates.
3 Fisherman’s Wharf is also relatively isolated. However, it is pri-
marily a tourist destination. Because tourists might not have much
knowledge of the SFpark program, they may make decisions differ-
ently, and we exclude it from our study.
4 Some parking spaces in Mission were blocked due to construction
in March 2012. This induced higher occupancy rates in this area.
For fair comparisons, we treat these blocks as available in welfare
and counterfactual analyses.
5 In most regions we study, there is one public garage operated by
the city. If there are multiple parking garages, a customer chooses
the one that provides the highest utility based on her destination.
We do not have data from private garages and, therefore, include
parking at a private garage as part of the outside option.
6 We do not explicitly model the choice of a departure time (e.g.,
morning or afternoon, Monday or Tuesday). However, such inter-
temporal shifts in demand are incorporated implicitly, to some ex-
tent, through the outside option. For instance, high prices on Tuesday
afternoons result in fewer consumers driving to their destination and
more consumers choosing the outside option.
7 We have also analyzed alternative model specifications, in which
virtd is a function of Xrtd only, a function of hi only, or a linear addi-
tive function of Xrtd and hi. None of these specifications fit our em-
pirical observations as well. In addition, to verify that a linear func-
tion of durations is reasonable, we estimate a model in which the
trip valuation is a quadratic function of the trip duration.
We find that, in all regions, the estimated coefficients of the qua-
dratic terms are all very close to and not statistically different from
zero, suggesting that the linear model is a reasonable proxy for cus-
tomer utility.
8 The distance between two blocks is calculated as the minimum
number of blocks that one has to walk from one block to the other.
We assume all blocks have the same length.
9 Based on the garage-payment data, these garages are never full,
with maximum occupancy rates of 75%, 72%, and 38% for Marina,
Fillmore, and Mission, respectively.
10 We assume that the set of outside options available in the second
stage once the search starts is the same as in the first stage. Ideally,
we would allow them to differ, as once the search starts, some out-
side options could be less appealing. However, we cannot empirical-
ly distinguish between customers who choose the outside option in
the first stage and those who do so in the second stage, and therefore
we assume that the two are the same. It is also possible to assume
that once the search starts, the outside options are no longer avail-
able. Our conclusions are robust to this alternative specification.
11 As we discuss in the estimation section, si also follows a log-
normal distribution. Therefore, siεirtdbk is log-normally distributed.
Note that without observing individual search paths, it is impossi-
ble to estimate the variances of si and εirtdbk separately. We therefore
standardize the distribution of εirtdbk to a standard log-normal
distribution.
12 Although the random-walk model abstracts away from some de-
cisions (e.g., which block to drive to based on different beliefs about
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the expected utility derived from each adjacent block), it does offer
reasonable levels of complexity and nuance. Given the many tran-
sient random factors at play (traffic, blockage, road condition, traffic
lights, emotions, etc.) and limited deliberation time in traffic, it is
possible that a random walk may actually be a more realistic model
of consumer behavior.
13 For simplicity of exposition, the notation ignores the direction of
driving (i.e., which block a customer searches next), but we simulate
driving directions in the estimation.
14 As a robustness check, we allow the coefficients κ to vary by
months, time of day (i.e., morning, noon, or afternoon), and week-
day versus weekend by including interactions of these variables
and the numbers of businesses. We find that the estimated coeffi-
cients of the interaction terms are not statistically significant.
15 These studies estimate search-related parameters in dynamic
models without observing the actual search paths. Hortaçsu and Sy-
verson (2004) model how investors search over funds with varying
attributes and estimate heterogeneous search costs using market-
share data and price data only. Hong and Shum (2006) develop a
method to uncover heterogeneous search costs with price data alone,
using equilibrium conditions from sequential and nonsequential
search models. Kim et al. (2010) estimate consumer search costs in
online retailing with view-rank data. Although the exact models and
the variations used to identify search parameters differ, as Hortaçsu
and Syverson (2004, p. 408) write, these papers demonstrate “how
aggregate data can be used to identify and estimate search costs sep-
arately from product differentiation, with particular attention to
minimizing the impact of functional form restrictions.” In fact, our
data are more detailed than in those papers, because we observe
each decision maker’s final decision and price variations over time
due to congestion pricing, not just aggregate market shares and
prices.
16 In Figure 3, a consumer may turn left, right, or continue straight
from the current block. If she turns left, it doesn’t change her dis-
tance from her ideal location; if she turns right or continues straight,
she will be one block farther from her ideal location. That is, with a
random walk, the expected increase in distance to ideal location if
she continues to search is 1=3 × 2+ 1=3 × 3+ 1=3 × 3

( )− 2 � 2=3,
while the expected increase in the number of blocks searched is ex-
actly one.
17 There were blocks with occupancy rates slightly above 80% in
other months that year, which led to subsequent price increases.
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